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Abstract. In this report I will take a brief look at fractals from a
philosophical point of view. In particular the definition of a fractal,
it’s computability, it’s relationship with the axiom of choice and
whether fractals really exist in nature.

1. Introduction

Fractals are mathematical objects which most people know look very
fascinating especially when produced under particular algorithms. Our
facination with fractals seems to have something to do with the fact
that we see many fractal-like objects in nature. But do fractals really
exist in nature and in fact do they ’exist’ at all. Whilst we can describe
them with a few equations, are they computable and can we ever re-
ally see a whole fractal? Are we assuming the axiom of choice when
we produce a fractal using the chaos game and if the axiom of choice is
not true could we produce a fractal? These are some of the questions
that I’ll ponder in this paper. We start with the very definition of a
fractal.

2. What is a Fractal?

It seems that different texts tend to have a different definition of
what a fractal is. Part of this is due to the extensive variety of fractals,
many looking quite different with very different properties. This makes
it very hard to find the things they have in common could be used
to define them. Benoit Mandelbrot gave a definition in his book The
Fractal Geometry of Nature then later withdrew it since it wasn’t really
suitable for some fractals. The simplest and most common definition
of a fractal is the following [5]:

Definition 1. A fractal is a set that consists of smaller subsets similar
to the larger set in some way.
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This is a very broad definition and allows any possibility determin-
ing the similarity of sets. Some examples include being a scaled down
versoin, having the same Hausdorff dimension or perhaps even just hav-
ing to contain a line and a point. This definition also doesn’t specify
that the smaller subsets should also consist of smaller subsets similar
to the whole subset. i.e. a fractal should have self-similarity evident
on all scales. For example take a (solid) disk in the plane, one could
argue that it contains smaller disks inside and that therefore the larger
disk is a fractal. One should note however that this definition can still
imply self-similarity on all scales, for example take an image of three
equilateral triangles with each touching a vertex of the other two. If
you then said each triangle is a shrunken image of all three then each
triangle must contain three smaller ones. However if you look at this
result then each of these triangles is not a shrunken image of the whole
so we change each of the three to shrunken versions of the whole and
repeat this forever (refer to figure1). This is one construction of the
Sierpinski triangle.

creation.jpg

Figure 1. creating the Sierpinski triangle

Mandelbrot gave an alternative definition of a fractal but to under-
stand this I must first explain the notion of fractal dimension.

2.1. Fractal Dimension. Fractal dimension is a measure of the size
and complexity of a fractal. It can be calculated precisely by the box
counting algorithm. This is a consequence of the box counting theorem
which states [Super Fractals p.175, Barnsley]
Let A ∈ H(Rm), where the Euclidean metric is used. Cover Rm by
closed square boxes of side length (1/2)n. Let Nn(A) denote the number
of boxes of side length (1/2)n which intersect the attractor.

If D = limn→∞
ln(Nn(A))

ln(2n)
exists then D is defined as the fractal dimension

and A has fractal dimension D.



THE PHILOSOPHY OF FRACTALS 3

This is a very precise number but can be experimentally estimated by

evaluating ln(Nn(A))
ln(2n)

for finite n. For example, given a digital image the

smallest size box we can use to measure is a single pixel. If an image
had resolution 1024 × 1024 then we could do at most 11 steps with
box lengths (in pixels) given by 210−n where n = 0, 1, 2, ..., 9, 10. You
should realise this is a very bad way of finding fractal dimensions and
is fundamentally wrong. Fractal dimension can only really be found
on objects with infinite resolution since we must take the limit of n to
infinity.
The Hausdorff-Besicovitch fractal dimension (abbreviated Hausdorff
dimension) is defined in a much more analytical way but is always no
more than the fractal dimension. In fact we often find they are the
same which is why it can also be referred to as the fractal dimension.
It is defined as follows [2]:

Definition 2. Let S ⊂ X, δ > 0 and 0 ≤ s < ∞. Let
HS

δ (S) = inf{
∑∞

i=1 ‖Ui‖s : {Ui} is a δ-cover of S},
Then the s-dimensional Hausdorrf measure of S is HS(S) = limδ→0 HS

δ (S).
The Hausdorff dimension of S ⊂ X is defined to be dimHS = inf

{
s : HS(S) = 0

}
.

Now we can make sense of Mandelbrot’s alternative definition of a
fractal [5]:

Definition 3. A fractal is a set whose Hausdorff dimension is larger
than it’s topological dimension.

For example, all arcs have a topological dimension of 1. An arc traces
out a fractal if it’s Hausdorff dimension is more than 1. For example
the seirpinski triangle (whose limit set is a curve) has Hausdorff dimen-
sion log(3)/ log(2) ≈ 1.585 > 1 and is hence a fractal. The Sierpinski
triangle also satisfies the previous definition since it can be broken up
into 3 shrunken versions of itself, each of which can be again broken
up and so on.

3. Fractals and the axiom of choice

Most fractals we see can be defined mathematically without the ax-
iom of choice but do our methods of computing a fractal implicitly
use the axiom of choice? In particular we need to know if the chaos
game requires the axiom of choice. If this was true the computability
of fractals would depend on whether the axiom of choice held.
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triangle.jpg

Figure 2. Sierpinski triangle

Definition 4 (IFS (iterated function system)). An IFS is a collection
of functions that map a subset of a metric space into itself. It is denoted
by F = {X; f1, ..., fn}.

For example the Sierpinki triangle lies in the Euclidean plane and
consists of 3 functions, hence F = {R2; f1, f2, f3}. We generally require
the functions to be contractive so that a fractal can produced from the
IFS in which case we say the IFS is hyperbolic. I will look at fractals
produced by a hyperbolic IFS in this essay. A fractal is produced from
an IFS in the following way:
The Chaos game is where we choose a function from those in the IFS
(iterated function system) at random according to predetermined prob-
abilities and then plot the point given by the function. We then take
that point and repeat the process and by doing this enough times we
get an approximate image of our fractal. To completely generate a
fractal we’d have to pick our first point to be on the fractal and then
play the chaos game for an infinite amount of time. For example, take
the IFS for the sierpinski triangle and take the origin. If we apply
f2, f3, f2, f1, f3, ... in a very long random sequence and plot each point
as we go then we would produce a set looking a lot like the Sierpinski
triangle and if the sequence were infinite we would produce the Sier-
pinski triangle.
Another way of generating a fractal is to take an image and apply all of
the IFS functions to it, superimpose the resulting images then repeat
with the new image. Do we require the axiom of choice to do this?
The fractal produced by an IFS is called the attractor and is denoted
AF .
We know that the axiom of choice doesn’t apply if we can enumerate
the set. One could enumerate the set according to the order in which
they came out using the chaos game and for points that come uptwice
we just keep the order to which we first assigned it. This seems a little



THE PHILOSOPHY OF FRACTALS 5

vague and it will also produce quite a mess in the sense that the or-
dering has nothing to do with where the point is on the fractal. Also,
the enumeration will be differnent each time you play the chaos game
and there’s also the fact that you need to play it forever to get every
point. As a result we don’t really get an enumeration.

Definition 5 (code space [4]). A code space Ω is a space of addresses
σ = σ1, σ2, .... Suppose φ : Ω → X then if φ(σ) = x we call σ the
address of x.

Another possible way to order a fractal is in code space. This is an
extremely useful space and it is through this space that we can con-
struct fractal homeomorphisms. If a fractal is generated by a hyperbolic
IFS which consists of a set and n functions, F = {X, f1, ..., fn}, then
we construct a code space Ω whose elements are an infinite sequence
of numbers from the set {1, ..., n}. For example, let σ ∈ Ω then σ has
the form σ = σ1, σ2, ..., σi, ... where each σi ∈ {1, ..., n}.
These elements correspond to points on a fractal as follows. For ex-
ample we know that if we apply a fixed infinite series of the functions
fσ1 ◦ fσ2 ◦ ... ◦ fσi

◦ ..., then the result will correspond to a single point
on the fractal. i.e.
y = limk−→∞ fσ1 ◦ fσ2 ◦ ... ◦ fσk

(x) for all x ∈ X. Hence we assign
y ∈ A (a point on the fractal) the code y → σ = σ1σ2...σi.... We can
then define a function φF which maps elements of the code space to
points on a fractal, y = φF(σ) = limk→∞fσ1 ◦ fσ2 ◦ ... ◦ fσk

(x), where
x ∈ X. This mapping from code space to the fractal attractor has a
nice geometrical interpretation. Each fuction maps a point to a specific
part of the attractor. I won’t go into too much detail but consider the
example of the sierpinski triangle. There are three subtriangle similar
to the whole by a scaling of 1/2. f1, f2, f3 will correspond to one of the
three parts each. Inside each of these smaller triangles we see the same
thing. By going down further and further we obtain a finite sequence
of functions corresponding to a subtriangle. (see figure3)

There is however a slight problem that more than one code may map to
the same point. For example, on the sierpinski triangle we can see that
12̄ = 21̄. To fix this we restrict ourselves to the tops code space which
has a one to one correspondence with points on the fractal. Then using
this codespace we can define an ordering relation on the fractal set.
Suppose we have σ, ω which correspond to the same point on a fractal
i.e. φF(σ) = φF(ω). Let k be the first index for which the codes σ and
ω don’t match up. Hence σi = ωi for all i < k and σk 6= ωk, and we
then define the ordering relation σ < ω iff σk > ωk. First you should
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Figure 3. functions mapping into the Sierpinski triangle

note that this ordering relation seems kind of backwards, for example
note that all σ are greater or equal to n̄ = nnnnnnn... and less than
or equal to 1̄ = 1111111.... This relation is will be very useful to us.
Now with the ordering relation above we define τF(x) = max {σ ∈ Ω : φF(σ) = x}.
Then the tops codespace is defined as ΩF := {τF(x) : x ∈ AF}. ΩF and
AF have a one to one correspondence and hence an ordering of ΩF is
equivalent to an ordering of the fractal AF . Hence we can use the or-
dering relation above to define an ordering over ΩF . This however is
not an enumeration since given two distinct codes in ΩF it may always
be possible to find another in between. This makes it as difficult as
trying to enumerate the real line segment [0, 1]. However what I’ll now
discuss will show you that we want to know if this is a well-ordering.

3.1. Computability of fractals. Some fractals can be quite difficult
to describe and what does this have to say about the computability
of a fractal. The problem is that fractals are sets of infinitely many
elements and to ’compute’ a fractal we might say we need to be able
to list it’s elements in some sort of way. This brings us to the well-
ordering principle which states any set E can be well-ordered which is
defined as follows [Real analysis p.26]:

Definition 6. A set E is linearly ordered if there is a binary relation
≤ such that:

(a) x ≤ x for all x ∈ E

(b) If x, y ∈ E are distinct, then either x ≤ y or y ≤ x (but not
both)

(c) If x ≤ y and y ≤ z then x ≤ z
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Definition 7. A set E can be well-ordered if it can be linearly ordered in
such a way that every non-empty subset A ⊂ E has a smallest element
in that ordering.

It is well known that the well-ordering principle is equivelent to the
axiom of choice, i.e. each implies the other.

3.1.1. Ordering of a fractal set. Now given an IFS I showed above
we can get a one-to-one correspondance with a fractal and it’s tops
code space and that we can then apply an ordering to the tops code
space. It is clear that using this ordering the set ΩF is linearly ordered.
However to know if it is well-ordered we need to know if every non-
empty subset of ΩF has a smallest element. First consider the whole
of ΩF . I mentioned that all σ ∈ ΩF are greater or equal to n̄ =
nnnnnnn... according to our relation. Hence you might be tempted
to say that n̄ is the least element of ΩF , however it is not clear that
n̄ ∈ ΩF . For example consider σ ∈ Ω such that σ 6= n̄ and φF(σ) =
φF(n̄) = y. If such a σ doesn’t exist then there is no problem but if
one does then we would find that n̄ /∈ ΩF since τF(y) = σ since n̄ < σ.
As a result it becomes unclear if ΩF has a least element.
To avoid this problem we can define a new ordering relation after the
tops code space has been produced. This will essentially be a reversed
version of the ordering we’ve bee using i.e. σ < ω iff σk < ωk where
k is the least index for which σk 6= ωk. Then 1̄ must be in ΩF as a
result of the ordering used to construct ΩF whilst this new ordering
guarantees this is now the least element. This gives hope that ΩF can
be well ordered but what we really need to know is any subset A ⊂ ΩF
has a least element and if 1̄ /∈ A then this is again unclear. Whist there
must be an infimum there is no guarantee that this lies in A. Consider
B = ΩF/{1̄}, the inf of B is clearly 1̄ but what is the least element? So
it seems we may either assume it can be well-ordered or assume that
it can’t, and of course assuming the first means we must assume the
well-ordering principle is true. This means we are also assuming the
axiom of choice is true, so by trying to avoid the axiom of choice we
are led to it’s equivalent.
This doesn’t imply the axiom of choice and the well ordering pricipal are
necessary and it also doen’t imply that they aren’t necessary. However
it does seem at this point that if you wished to enumerate or well-order
every fractal set it could only be done if they were both true.

4. Is a coastline really a fractal?

This isn’t easy to answer? They certainly look like they might cor-
respond to a fractal, like a Julia set perhaps.
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We could approximate the Hausdorff dimension by tracing the coastline
from a map and applying the box-counting algorithm (see the section
on notions of dimension). If we then refer to definition 2 we would find
that most coastlines have a Hausdorff dimension more than 1 (which is
the topological dimension) and could therefore be considered to be frac-
tals. However if we refer to definiftion 1 we may see some self-similarity
in a coastline however I must point out that this self-similarity doesn’t
continue indefinitely on all scales as it does in most mathematical frac-
tals. I would therefore argue that a coastline is not a fractal in this
sense. Hence we appear to have contradicting arguements.
One important question is just how did we compute the Hausdorff di-
mension of the coastline. This is most generally approximated by the
box-counting algorithm in which case we must ask at what scale this
was done to. If we took a map of a particular coastline and zoomed in
far enough we would see that it consists of a finite piecewise smooth
curve. This then means the coastline in fact has Hausdorff dimension
1. Hence we could then say that a coastline is definitely not a fractal
according to our definitions.
However you may then ask, how accurate was the map we used, what
if we had a map outlining the coastline accurately on all scales. Then
we need some sort of precise definition of the coastline, an obvious def-
inition would be the line which separates land from water. However
this is constantly changing with the waves and the tide. To solve this
we could gather data over some time and then take the mean or al-
ternatively just look at an instant in time. Ultimately we would get
a coastline accurate to the scale of millimeters but this could still be
broken into a smooth piecewise curve. Eventually we find that the
smallest scale we could measure the coastline down to is were water
molecules meet sand molecules. Again we could describe it as a piece-
wise smooth curve. Even if we went further into particle physics and
quantum physics we would be stopped by the Planck length assuming
our current understanding of physics is correct.
So is a coastline a fractal? No, not strictly according to our definitions.
However it would be possible to create a fractal which, when smoothed
at the appropriate length scale, would be exaclty our coastline. Hence
we may view coastlines as an approximation to a fractal. Such a fractal
could be produced by the collage theoerem. In simple terms this theo-
rem states that if you cover an image with smaller copies of itself and
then work out the functions that map the image to each of the smaller
pieces then you can create an IFS with these functions and then pro-
duce a fractal from the IFS which will look as close as you like to the
original image. For example examine a coastline to the length scale at
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which we can’t get any more accurate simply place a shrunken segment
of the original coastline and continue this on all scales. As a result we
would have a fractal that looks like the coastline at regular scales but
has fractal properties at all scales. Also there are many algorithms to
create coastline looking curves using fractal and chaos theory. This is
why many people may consider coastlines to be fractals.
The same could be applied to ferns, trees, landscapes, rivers and any
fractal-like object in nature. They’re all fractals in the sense they can
easily be approximated by fractals but strictly speaking they aren’t. Of
course all of this assumes that our current physics and understanding
of the universe is correct which brings me (very briefly) onto the topic
of fractal cosmology .

4.1. Fractal cosmology. Not only do people see examples of fractals
in nature but also in the universe. Some have suggested that galaxies
are fractally distributed and the notion of fractal hasn’t only been used
on coastlines but also on some of the many things out in space. There
is also the question of whether or not the universe is bigger than the
observable universe. This applies to infinite and infinitesimal scales.
For example the universe may have infinite resolution going beyond
the Planck length but we just can’t observe it. Given the probabilistic
nature of quantum mechanics it doesn’t seem surprising that there are
chaotic systems out there that may produce fractal looking objects or
have many other fractal like properties. Who knows what we might
find in the future.

5. Can Fractals be described over alternatives to ZF?

This is another very interesting question since if we could produce
a set theory where we don’t have the complications of the axiom of
choice then it could make many things quite a lot simpler and perhaps
we could even produce a more concrete definition of a fractal. Using
definition 1 it may be very easy to produce a fractal using other axioms
of set theory. What we really need to know is which axioms of ZF are
necessary to define a fractal. I will look at a few of these.
The first of the axioms of ZF, which is also in most of the alternatives
to ZF in some form, is the notion of equality of sets. i.e. that two sets
are equal if and only if they contain exactly the same elements. This
is extremely important in all of set theory but is especially relevant to
fractals since this will be neccesary to show the self-similarity of sets.
For example if we look at the Sierpinski triangle, S, and separate it
into 3 parts, S1, S2 and S3 we can see that 2 × S2 = S (by which we
mean {2x : x ∈ S2} = {x : x ∈ S}) and similarly for S1 and S3 with
appropriate translations. But using the equality sign only makes sense
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if we have this axiom of ZF.

3 subsets.jpg

Figure 4. similar subsets of the Sierpinski triangle

The third axiom is the axiom schema of specification and would be
necessary to define some fractals and is also very usefull in theory.
For example we can’t define the tops codespace without this axiom
since we require to separate the max of all elements in codespace that
correspond to the same point of a fractal. This axiom allows us to do
this.
The axiom of infinity is obviously necessary in ZF due to the infinite
nature of fractals. For a specific example consider the subset of a fractal
produced by taking a single element x and adding the element f1(x)
to the subset and then f1(f1(x)) etc. Such a set only exists under the
axiom of infinity. However whilst this axiom is necessary to produce
infinite sets in ZF there are alternatives like NF which have infinite
sets without this axiom.
We could go on to find that most of the axioms of ZF are necessary
and that some may be better replaced with others but we’d essentially
have the same thing. I won’t go into this because of the amount of
detail necessary. You should note however that it is unclear whether
the axiom of choice and the well-ordering principle should be part of
ZF due to some of the paradoxes they bring up. However many people
include them in what is abbreviated ZFC, i.e. ZF with the axiom of
choice, in order to avoid problems. As I discussed above it is unclear
whether we need it but it may be easier to include it.
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