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The purpose of this essay is to explore some issues that arise out of the
interaction between inductive and deductive logic in mathematics. I begin
with a general account of how belief and uncertainty figure in the physi-
cal sciences, and move via analogy to mathematics. I then provide a brief
normative account of inductive reasoning in mathematics.

Belief and uncertainty

How best to make sense of our naive concepts of belief and uncertainty is
a controversial issue in the philosophy of mind. I will present an informal
account of the words as I intend to use them, neglecting many of the com-
plexities involved. This will hopefully be enough for our purposes.

We say that an agent believes a proposition p if she thinks that p is true.
Such a belief is explicit if the agent has previously thought about p and
retains a representation of the truth of p in her accessible memory. The
belief is implicit if, given her current explicit beliefs, the agent could quickly
derive the truth of p as an explicit belief. For example, Jane might believe
explicitly that there are 6 states of Australia. However, her belief that the
number of states is divisible by 3 is most likely implicit, unless she has been
in the unfortunate circumstance of dividing a cake between them. Simi-
larly, she might believe explicitly that 1 x = z for all . However, if
she has never come across the number 13964 before then the instantiation
1 x 13964 = 13964 is only an implicit belief of hers.

By this definition, there is a sharp distinction between explicit and implicit
beliefs, at least if we ignore problematic cases such as when memory ac-
cess is difficult or when an agent repeatedly derives a particular proposition
from a simpler one, such as a mnemonic.! However, there is no sharp dis-
tinction between what an agent believes implicitly and what she does not

1For instance, some mathematicians derive identities like sin 260 = 2sin @ cos # by using
Euler’s formula e = cos 6 + isin @ every time they need them.



believe, because quickness of derivability is a matter of degree (Schwitzgebel
2008). This has important consequences for our discussion of mathematical
propositions. Suppose, for instance, that Jane is introduced to the axioms
of Peano arithmetic along with the definition of a prime number. Does she
now have an implicit belief that:

e 2 is prime?

53 is prime?

there are infinitely many primes?

the prime number theorem is true?

All these propositions are logical consequences of the Peano axioms, but
some can be derived much more quickly than others. While the primality of
2 is obvious to anyone who understands the definition of a prime, an elemen-
tary proof of the prime number theorem was not published until 1949, sixty
years after the Peano axioms were first defined (Cf. Peano 1889; Erdos 1949;
Selberg 1949). With this in mind, T will understand ‘quickly derivable’ to
mean derivable in a matter of seconds without the aid of technology. Thus,
for most people in Jane’s situation, only the first proposition above would be
an implicit belief. As an agent gains in mathematical knowledge and skill,
we would expect not only the number of her implicit mathematical beliefs
to increase, but also the ratio of her implicit to explicit beliefs.

On to uncertainty. We say that an agent is uncertain about a proposition p
if she is aware of p but believes neither p nor —p. It is sometimes useful
to quantify an agent’s uncertainty about a proposition. We do this in the
standard way, by assigning to the proposition a real number B(p) € [0, 1],
where B(p) = 1 represents the agent’s belief in p and B(p) = 0 her belief in
—p. We call B(p) the agent’s degree of belief in p.2 As in the case of beliefs,
we can talk about implicit and explicit degrees of belief. Before you read
this sentence, you probably had no explicit degrees of belief regarding the
10%th digit of 7. Now you do.

We might measure an agent’s degree of belief about p by ascertaining what
betting odds she will accept over the truth of p. If B(p) lies in the interval
(a,b) C [0,1] then she will accept any odds better than 1=% : 1 that p is true
and any odds better than 1T7b : 1 that —p is true.

20f course, if we are strict about requiring that beliefs occupy only endpoints of the
interval [0, 1] then many people may have no beliefs at all. In practice, we may be laxer
and call a proposition a belief if it is ‘near enough’ to the endpoints.



Of course, this is a very fragile measure. What if our agent is especially
risk-averse, or loves to gamble? What if, as Eriksson and Héjek (2007) sug-
gest, she is a Zen Buddhist to whom money has no utility? These examples
undermine the reliability of betting behaviour as a measure of degrees of
belief, but I do not believe they undermine the coherence of the very idea.
In the same way, my ability to lie about my beliefs undermines my word as
a reliable measure of them, but not the coherence of the idea that I have
beliefs. In both cases, we are considering a state of mind that is imperfectly
indicated by external behaviour. We will return to this idea later on.

Uncertainty in the physical sciences

We may crudely suppose that a scientific theory consists of a set of data
together with a model that is designed both to agree with existing data and
to make predictions about future data. I propose that uncertainty enters
into such a theory in four main ways:

1. Indeterminism: some models assume that particular physical pro-
cesses are inherently indeterministic. The Copenhagen interpretation
of quantum mechanics is an example of this. In such cases, no amount
of information about the system will allow us to predict its future
states perfectly. Uncertainty is built into the theory.

2. Data uncertainty: it is often impossible to determine accurately the
current or past states of a physical system. This may be due to instru-
mental imprecision, to an inability to survey some parts of the system
or to a complete lack of data. Data uncertainty can result in uncer-
tain predictions, even when using an accurate model. For instance,
astronomers often have difficulty predicting the future trajectory of
asteroids due to uncertainty about their position and velocity.

3. Model uncertainty: even if accurate data are available for a system,
there may be either no good model or several competing models to
explain it. Uncertainty results if the models make different predic-
tions about future data. The most general formulation of this type of
uncertainty is the problem of induction.

4. Computational complexity: even if accurate data are available and a
good model exists for predicting future states of the system, the model
may require computations that are too complex to perform exactly.
Some of the first accurate weather predictions were so computation-
ally complex that the forecasters had difficulty keeping up with the
weather! (Lynch 2008). In these cases, heuristic or statistical calcula-
tions may be very useful. However, they introduce uncertainty that is
not inherent in the model.



Of course, these causes of uncertainty do not normally operate in isolation.
Indeterminism and (in principle) data uncertainty interact in the Copen-
hagen interpretation of quantum mechanics. Weak underdetermination of
cosmological theories often arises because a lack of data renders compet-
ing models inseparable. In chaotic systems, uncertainty about initial states
combines with computational complexity to make long-term predictions im-
possible. It is even possible for all four types of uncertainty to interact in a
single situation. How certain are scientists that the Large Hadron Collider
at CERN will not destroy the earth? Any good answer to this question
would have to involve all four concepts of uncertainty.

Uncertainty in mathematics

Every mathematical theory works from a set of assumptions. These are
propositions that the relevant mathematical community considers basic, in
the sense that they are not in need of formal justification. In most modern
mathematics, such assumptions take the form of axioms. Before the nine-
teenth century, the assumptions were usually much broader than this, and
this is still the case with fledgling contemporary theories.

As well as a set of assumptions, a successful mathematical theory provides
a set of procedures by which new propositions can be derived from the as-
sumptions and from previously derived propositions. We will refer to such
procedures as rules of deduction, keeping in mind that they may operate at
a higher level than the formal rules of an axiomatic system.

Time for an analogy. In the same way as scientists use a model to extrapo-
late from existing data to new predictions, we can think of mathematicians
as extrapolating from assumptions to new propositions by means of the rules
of deduction. The analogy works best if we consider scientific models that
predict future system states based on initial conditions. Models of planetary
motion, population dynamics and weather patterns all work in this way. We
can think of the assumptions as corresponding to initial conditions, while
the rules of deduction correspond to the algorithm that predicts future sys-
tem states from past and current ones. We may visualise the extrapolation
in the mathematical case as a (generally infinite) directed rooted tree, where
the nodes represent sets of previously derived propositions and the branches
represent the application of a rule of deduction.

Where does uncertainty enter this mathematical picture? Assumptions and
rules of deduction are not subject to the same types of scrutiny as the data
and model of a scientific theory are. They may be criticized for being un-
productive, restrictive, inelegant, unintuitive or boring. However, isolated



from any application they are not usually criticized as inaccurate. As a
mathematical theory need not be representational, there may be nothing
external against which to check its accuracy. It is possible, and I think
helpful, to consider any assumptions or rules of deduction to be true by
default. The truth of a mathematical proposition is then relative to the
background theory. For instance, parallel lines never meet in Euclidean ge-
ometry, but they do in projective geometry. In the absence of a particular
theory, the question of whether parallel lines meet has no definitive answer.
Contrast this with scientific theories. Newtonian mechanics does not predict
the perihelion precession of Mercury, while the theory of general relativity
does. However, the truth of Mercury’s precessing perihelion is not relative
to which theory we are discussing, as the observable phenomena provide a
check for the correctness of the theory.

These considerations make it difficult to attribute uncertainty in mathemat-
ics to assumptions or rules of deduction. What about indeterminism then?
It is true that probability theory deals with indeterministic mathematical
processes analogously to how some scientific theories deal with indetermin-
istic physical processes. However, probability theory is only one branch of
mathematics and has no monopoly on uncertainty.

A more fundamental cause of uncertainty in mathematics is computational
complexity. As any mathematician has only finite resources with which to
conduct deductive reasoning, it is not usually possible for her to determine
deductively whether a given proposition is a logical consequence of her other
beliefs. However, she may consider other types of evidence in forming a de-
gree of belief, as we will see in the next section.

The sums are too hard

Let us begin with two examples. Firstly, the infinite series

11 1
41—t
" ( 375 7+)

allows us to calculate m to an arbitrary number of decimal places, given
sufficient computing time.® There is no uncertainty about where to start or
how to get there. However, if I ask a mathematician what the 10%9th digit
of 7 is, she will not know the answer. She will have neither an explicit nor
an implicit belief about the matter, even though the value of this digit is
a logical consequence of other beliefs she holds. Her uncertainty arises out
of the sheer complexity of calculation. However, this same complexity need

3For actual computations of 7, much more sophisticated convergents are used.



not prevent her from forming a degree of belief about whether the digit is
a 3. She may know, for instance, that amongst all the known digits of ,
each of the integers from 0 to 9 appears roughly equally and that many
mathematicians believe that 7 is normal. She may consider that even if 7 is
not normal, she has no reason to believe that 3 is any likelier or less likely
than any other digit.

Secondly, the Goldbach conjecture states that every even integer greater
than 2 can be written as the sum of two primes. The conjecture has never
been proved. However, it has been checked by brute force computation for
all n < 106 (Oliveira e Silva 2005). There are also heuristic arguments that
we should expect any exceptions to the conjecture to be small. Thus, most
mathematicians have a high degree of belief in the Goldbach conjecture that
nonetheless falls short of 1.

Thus, we can see that a formal proof is not the only factor that may change
a mathematician’s degree of belief about a proposition. Some other possible
factors are: partial proofs or proof sketches; proofs of similar or analogous
results; numerical verification of a large number of cases; agreement with
the results of a physical experiment; and many others.

Dutch bookies shouldn’t be too clever

I now discuss a frequent objection to the idea of degrees of belief in
mathematical statements. To make matters simpler, we first develop some
notation. Let A represent a set of assumptions and R a set of rules of de-
duction. Further, let p and ¢ represent propositions. We write p F ¢ if ¢
is derivable from AUp by (finite) repeated applications of the elements of R.

Some philosophers argue that any agent whose degrees of belief are not de-
ductively consistent is irrational. For instance, they argue that if p is a
tautology, then any rational agent must have B(p) = 1. This claim is often
supported by a so-called Dutch book argument. Such arguments assume
that if B(p) is defined then the agent should be willing to pay anything less
than $8(p) for a bet that is worth $1 if p is true and $0 if p is false. She
should also be willing to sell such a bet for anything more than $8(p). Now,
suppose that p is a tautology but B(p) < 1. Then a Dutch bookie can buy
from the agent for only $8B(p) a bet that is worth $1 if p is true. But p is
guaranteed to be true, and so the agent will make a sure loss.

If accepted in its general form, this argument has the consequence that for
any mathematical proposition p, it is irrational for B(A F p) to lie in the
interior of [0,1]. This is because p either is or is not derivable from A via



the rules of deduction and so A F p is either a contradiction or a tautology.
Thus, it is irrational to have intermediate degrees of belief about mathemat-
ical statements.

I will argue that Dutch book arguments in their unqualified form are unrea-
sonable. Let us first of all ignore the many problems with the presentation of
Dutch book arguments and focus on what they are trying to show.* The idea
is that a bookie who knows no more than the agent is able to make a book
against her because her degrees of belief do not conform to the probability
calculus. This symmetry of knowledge is important. Suppose, for instance,
that the agent believes there is a one in three chance that her favourite
horse will win the Melbourne cup. She is presumably tempted by her local
bookie’s odds of 6 : 1 on the horse. The bookie, however, has poisoned the
horse himself and knows that it will die on the starting blocks. The bookie
can make a sure win out of the agent if she bets on the horse. However, this
is not because the agent is irrational. The bookie simply knows more than
she does.

Consider now another situation that is similar to the one above. A bookie
offers a mathematician a bet at 20 : 1 odds that the 10°th digit of 7 is a
3. The mathematician believes that no-one has yet calculated this digit but
knows that her distributed computing project will arrive at the answer in a
matter of weeks. Now, suppose that the bookie has been secretly running his
own distributed computation through a trojan virus and he already knows
the digit’s value. As before, the bookie can make a sure win out of the agent
if she accepts the bet. But, as before, he knows something the agent does
not: namely, that the definition of 7 implies by deduction that the 10°°th
digit of 7 is whatever he knows it to be. The knowledge asymmetry in this
scenario is not so different to that in the previous one. In both scenarios, the
bookie is taking advantage of information that is inaccessible to the agent.
In the first case, it is empirical knowledge; in the second, it is deductive
knowledge.

I have argued that intermediate degrees of belief about mathematical state-
ments are not irrational. However, I have not disputed that a mathemati-
cian should try to conform her beliefs to the probability calculus where she
can. For instance, if the mathematician knows that p is a tautology, then
she should adopt B(p) = 1. The Dutch book argument makes sense here
because there is no asymmetry of knowledge. Thus, we might think of a
mathematician as having two strategies in beating the Dutch bookie of life.
The first is to aim for as much consistency in her mathematical beliefs as her

“In keeping with my earlier comments, I believe Dutch book arguments are best viewed
as attempts to display, rather than define, irrationality.



state of knowledge allows. The second is to maximise her access to relevant
knowledge.

Inductive reasoning in the deductive science

In this final section I develop a very simple consistency model for beliefs
about a mathematical theory. Defending and developing the requirements
is beyond the scope of this essay. For convenience, I will use the notation
AFpVg=(AFp)V(AFq and AFpAg=(AFp)A(AF q).

Let P be the set of mathematical statements about which an agent has an
explicit degree of belief. I propose that in order to be considered rational, the
agent’s degrees of belief should obey the following consistency requirements
(cf. Gaifman 2004):

1. If « € A then B(AF a) = 1.

2. If AFpisin P thensois =(At+ p) and B(=(AF p)) =1—B(AF p).

3. IfAFp AFq, AFpVgand AF pAq are all in P, then
B(AFpVq) =BAFp)+B(AFq) —B(AFpAg).
4. f pkq, AFpand AF g are in P then

B(AFp)B(pt q) <B(AF q).

Among other things, these requirements imply that if p and ¢ are known to
be equivalent in a mathematical theory, then B(A  p) = B(A F ¢q). They
can also be used to prove a version of Bayes’ theorem once conditional prob-
ability has been defined.

Conclusion

Inductive reasoning does and should have a place in the thoughts and deci-
sions of mathematicians. Unlike in the physical sciences, where uncertainty
about data and models plays a key role, mathematical uncertainty is due
primarily to computational complexity. This complexity cuts mathemati-
cians off from most deductive consequences of their beliefs, making inductive
reasoning both rational and useful. In order to be considered rational, the

®Note that I am not assuming that anything in the mathematical theory corresponds
to an AND or OR connective. The connectives are external to the system.



degrees of belief that result from such reasoning should satisfy weak require-
ments of consistency.
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